مبحث بردارها
مبحث بردارها
دسته بندی | ریاضی |
فرمت فایل | doc |
حجم فایل | 420 کیلو بایت |
تعداد صفحات | 50 |
دریافت فایل
مبحث بردارها
بردارها:
تساوی در بردار: موازی، هم جهت و هم طولی دو بردار به تساوی آن دو میانجامد.
مجموع دو بردار : روش متوازی الضلاع
روش مثلثی
خواص بردارها:
شرکتپذیری:
بردار صفر: انتها و ابتدای بردار بر هم منطبق است. و با o نشان میدهیم.
برای هر بردار دلخواه داریم
قرینه برای یک بردار: اگر بردار معلومی باشد برای برداری با همان اندازه و جهت مخالف آن قرنیه نام دارد و با مشان داده میشود.
تفاضل دو بردار: تفاضل دو بردار را بصورت زیر تعریف میکنیم:
تذکر: اگر بردار و اسکالر معلوم باشند حاصلضرب است. یعنی برداری با همان جهت ولی برابر طویلتراز اگر و برداری مختلف الجهت با ولی برابر طویلتر از اگر .
برداریکه: هر برداری به طول واحد را یک برداریکه گوئیم. اگر بردار نا صفر باشد یک بردار یکه است.
زاویه بین دو بردار: منظور از زاویه بین دو بردار ناصفر که با نشانداده میشود یعنی زاویهای که باید بچرخد تا جهتش با جهت یکی شود.
°
°
°
ضرب اسکالر( ضرب نقطهای یا داخلی)
منظور از حاصلضرب اسکالر دو بردار که با نشانداده میشود یعنی عدد:
زاویه بین دو بردار را میتوان از به یا از به سنجید. زیرا و
تذکر: 1.
2.
3. حاصلضرب صفرا ست اگر تنها اگر همچنین بردار صفر بر هر برداری عمود است.
مثال: مثال : اگر خط جهت دار و بردار معلوم باشد منظور از تصویر اسکالر روی L که به صورت نوشته میشود.
یعنی:
بطور کلی با معلوم بودن دو بردار منظور از تصویر اسکالر روی یعنی
قضیه: اگر و آنگاه :
نتیجه:
مثال : اگر بردار آنگاه:
هر برداری در ضرب شود مؤلفه اول بدست میآید و اگر در ضرب شود مؤلفه بدست میآید:
تذکر1:
آنگاه
2.
مثال: و را در صورتیکه با هم زاویه ° 60 بسازند. را بیابید.
ضرب برداری( خارجی)
برداری است که بر صفحه دو بردار عمود است.
منظور از حاصلضرب خارجی دو بردار که با نشان داده میشود یعنی بردار بطوریکه:
1- اندازة C برابر است با:
2- بر صفحه عمود است و در جهت حرکت یک پیچ( راست دست) ک تیغهاش از به باندازه میچرخد نشان داده
تذکر: هرگاه یا یا آنگاه
مساحت متوازیالضلاع ارتفاع قاعده
با توجه به فرمول قبل و شکل بالا نتیجه میگیریم که مساحت متوازیالضلاعی که توسط بردارهای و ساخته میشوند با ضرب خارجی برابر است.
و مساحت مثلث ساخته شده توسط دو بردار قبل نصف مقدرا قبلی است .
مساحت مثلث
تذکر: حاصلضرب خارجی با معکوس شدن و ترتیب بردارهای تغییر علامت میدهد.
مثال هرگاه . بردارهای متعاعد یک، باشند.
تذکر :1
2
3-ضربهای برداری شرکتپذیر نیستند.
قضیه: هرگاه :
آنگاه
مثال: مساحت مثلث به راسهای:
و و را بیابید.
* ضربهای سه تایی از بردارها
حاصلضرب سه تایی را در نظ بگیرید واضح است که:
که درآن مساوی ارتفاع(h) متوازی سطوح پوشیده بوسیلة بردارهای است و چون مساحت قاعده متوازیالضلاع است پس متوازیالضلاع برابر حجم متوازیالسطوح است.
قضیه:هرگاه و ، آنگاه
مثال: ثابت کنید
* صفحه:
یک صفحه بردار ناصفر عمود بر صفحه بطور منحصر بفرد مشخص میشود بردار n قائم بر صفحه نامیده میشود.
قضیه: هر صفحه معادلهای به شکل دارد که در آن A B C همگن صفر نیستند بر عکس هر گاه C B A همگی صفر نباشند هر معادله به شکل (1) معادله یک صفحه را مشخص میکند.
معادله صفحهای که از نقطة میکند و بردار قائم آن است عبارتست از
مثال: بازای دو نقطه معلوم:
صفحه مابر عمود بر خط گذرنده از رابیابید:
صفحه P به معادله عبارت است از:
مثال: معادله صفحهای و موازی دو بردار و و را محاسبه کنید.
مثال : معادله صفحه گذرنده از نقاط و و عمود بر صفحه باشد را بدست آورید.
N عمود بر صفحه مورد نظر
* خطوط در
خط ما با یک نقطه معلوم روی L و بردار دلخواه موازی L بطور مختصر به فرد مشخص میشود فرض کنید: نقطه دلخواهی در باشد در اینصورت هر گاه باشد یعنی که t یک اسکالر است.
معادلات پارامترهای خط
معادله متعارف خط L
با معادله خطی که از نقطه میگذرد و با بردار u موازی است.
تذکر:
اگر یکی از مخرجهای c b a در معادله متعارف صفر باشد صورت نیز باید صفر باشد مثلاَ اگر ، معادله خط بصورت زیر نوشته میشود.
مثال: معادله خط گذرانده از نقطه موازی خط
حل :
مثال:
فصل مشترک دو صفحه
را بدست آورید:
مثال:
معادله خط گذرنده از دو نقطه: ،
حل :
مثال :
ثابت کنید خط: و فصل مشترک صفحات و موازیاند:
و
حل :
بردار فصل مشترک
* توابع برداری:
در این فصل با ترکیب حساب دیفرانسیل انتگرال و بردارها مطالعه حرکت اجسام در فضا میپردازیم برای این منظور مؤلفههای عددی بردار شعاعی از مبدأ تا جسم را توزیع مشتقپذیری از زمن فرض کنیم و به این ترتیب بردارهای جسم را توصیف میکنند بدست میآوریم:
بردار شعاعی
از مبدآ تا نقطه که مکان زیر را در لحظه t از حرکتش در فضا بدست میآوریم.
* مشتق یک تابع برداری:
اگر و و توابعی با مقادیر حقیقی باشند از t باشند و بردار
یک تابع با مقادیر برداری از t باشد بردار مشتق F نسبت به t میباشد مانند حالت حرکت در صفح طول بردار بسرعت، مقدار سرعت جسم و جهت بردار سرعت جهت حرکت است.
مثال: بردار مکان یک جسم متحرک در لحظه t را مشخص میکند.
در مقدار سرعت و جهت ر مشخص کنید در چه لحظهای در صورت وجود سرعت و شتاب جسم بر هم عمودند.
جهت سرعت
در لحظه شتاب و سرعت بر هم عمودند.
* قاعده زنجیرهای:
اگر مکان ذرهای باشد که روی یک مسیر در حرکت است و اگر با قرار دادن تابعی از بجای متغیرها را عوض کنیم مکان ذره تابعی از S میشود داریم:
[ بازدید : ] [ امتیاز : ]