وبلاگ رایگان دانلود فیلم و سریال رایگان ساخت وبلاگ رایگان
حذف در پنل کاربری [X]
مقاله مينيمم كردن توابع چند متغيره فروشگاه

ابزار وبمستر

مقاله مینیمم کردن توابع چند متغیره

۱۱ خرداد ۱۴۰۳
۰۹:۵۶:۱۸
ادمین

مقاله مینیمم کردن توابع چند متغیره

مقاله مینیمم کردن توابع چند متغیره

دسته بندی ریاضی
فرمت فایل doc
حجم فایل 561 کیلو بایت
تعداد صفحات 45
برای دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل

مینیمم کردن توابع چند متغیره

 

مقدمه:
یک کاربرد مهم حساب دیفرانسیل، پیدا کردن مینیمم موضعی یک تابع است. مسائل مربوط به ماکزیمم کردن نیز با تئوری مینیمم کردن قابل حل هستند. زیرا ماکزیمم F در نقطه ای یافت می شود که -F مینیمم خود را اختیار می کند.
در حساب دیفرانسیل تکنیک اساسی برای مینیمم کردن، مشتق گیری از تابعی که می‌خواهیم آن را مینیمم کنیم و مساوی صفر قرار دادن آن است.
نقاطی که معادله حاصل را ارضا می کنند، نقاط مورد نظر هستند. این تکنیک را می توان برای توابع یک یا چند متغیره نیز استفاده کرد. برای مثال اگر یک مقدار مینیمم را بخواهیم، به نقاطی نگاه می کنیم که هر سه مشتق پاره ای برابر صفر باشند.
این روند را نمی توان در محاسبات عدی به عنوان یک هدف عمومی در نظر گرفت. زیرا نیاز به مشتقی دارد که با حل یک یا چند معادله بر حسب یک یا چند متغیر بدست می آید. این کار به همان سختی حل مسئله بصورت مستقیم است.

مسائل مقید و نامقید مینیمم سازی:
مسائل مینیمم سازی به دو شکل هستند:نامقید و مقید:
در یک مسئله ی مینیمم سازی نامقید یک تابع F از یک فضای n بعدی به خط حقیقی R تعریف شده و یک نقطه ی با این خاصیت که

جستجو می شود.
نقاط در را بصورت z y x و... نشان می دهیم. اگر نیاز بود که مولفه های یک نقطه را نشان دهیم می نویسیم:

در یک مسئله ی مینیمم سازی مقید، زیر مجموعه ی K در مشخص می شود . یک نقطة
جستجو می شود که برای آن:

چنین مسائلی بسیار مشکل ترند، زیرا نیاز است که نقاط در K در نظر گرفته شوند. بعضی مواقع مجموعه ی K به طریقی پیچیده تعریف می شود.
سهمی گون بیضوی به معادله‌ی

را در نظر بگیرید که در شکل 1-14 مشخص شده است. به وضوح مینیمم نامقید در نقطه ی
(1و1) ظاهر می شود، زیرا:

اگر
مینیمم مقید 4 است و در (0،0) اتفاق می افتد.
Matlab دارای قسمتی است برای بهینه سازی که توسط اندرو گریس طراحی شده و شامل دستورات زیادی برای بهینه سازی توابع عمومی خطی و غیر خطی است.
برای مثال ما می توانیم مسئله ی مینیمم سازی مربوط به سهمی گون بیضوی نشان داده شده در شکل 1-14 را حل نماییم.
ابتدا یک M-file به نام q1.m می نویسیم و تابع را تعریف می کنیم:


موضوعات مرتبط: فروشگاه
برچسب‌ها: ،
[ بازدید : ] [ امتیاز : ]
ارسال نظر
نام :
ایمیل :
سایت :
پیام :
خصوصی :
کد امنیتی :
فروشگاه اینترنتی
نام و نام خانوادگی :
ایمیل:
عنوان پیغام:
پیغام :
تمامی حقوق این وب سایت متعلق به فروشگاه است. || طراح قالب avazak.ir